Tendon Clinic at NYDNRehab

About Tendon Injuries and Rehabilitation

Tendons are made up of fibrous elastic connective tissue that is continuous with muscle tissue, connecting muscle to bone at the joint. As muscles contract, they produce rotational force (torque) that causes tendons to pull against their bony attachments, producing movement as the bone rotates around the joint axis.

During physical activity, tendons are subjected to enormous repetitive force loads that can sometimes cause ruptures and overuse injuries. Tendons are often slow to heal due to their limited blood supply. If left untreated, injured tendons can degenerate over time, dramatically reducing mobility.

At NYDNRehab, we use regenerative therapies and innovative training approaches to accelerate tendon healing and restore optimal function.

Contact us »

or

Dr. Lev Kalika

Clinical director & DC RMSK

About Tendon Specialist Dr. Lev Kalika

With over 25 years of experience treating tendinopathies, Dr. Kalika has formulated his own unique approach to diagnosis and treatment. As an expert in diagnostic ultrasonography, he has published multiple scientific publications that have helped to take diagnostic medicine to the next level. He has worked with some of the world’s leading radiologists in the field of musculoskeletal ultrasonography.

“My success in treating tendon injuries comes from a deep understanding of tendon pathologies, and from the ability to visualize each individual tendon. No two tendons are alike in their anatomy, biomechanics and function. Most tendons are superficial structures, and are much better visualized by high resolution ultrasonography versus MRI. A distinct advantage of diagnostic ultrasonography over MRI is its ability to visualize muscles and tendons in motion.” – Dr. Lev Kalika

Dr. Kalika has helped hundreds of patients to rehabilitate tendon injuries, restore functionality, and return to sports and physical activity. His expertise in musculoskeletal ultrasonography makes him one of the most sought-after specialists in NYC for tendinopathy diagnosis and treatment.

Accurate Diagnosis is the First Step to Successful Treatment

NYDNRehab features research-grade ultrasound equipment with the highest resolution available in New York City. Our equipment gives us capabilities for sonoelastography to test for tendon stiffness, and superior microvascular imaging (SMI) to assess inflammation and detect vascular neogenesis.

Sonelastography and SMI are the latest advancements in tendon imaging, and are not possible with other radiological modalities. In addition, NYDNRehab is among the first sports medicine clinics to feature dynamic ultrasonography using the USONO ProbeFix device.

ProbeFix attaches directly to the athlete, allowing us to visualize damaged tissues during sport-specific actions. ProbeFix renders accurate real-time images of the body’s structures in motion, and can even be synced with motion capture cameras to produce 3D images of muscles, fascia, bones and joints during physical activity. This game-changing technology gives us a huge advantage for diagnosing tendon injuries and restoring optimal sport-specific biomechanics.

NYDNRehab is the only clinic in New York with a fully equipped motion and gait analysis laboratory. Our motion and gait analysis technology and proprietary software lets us measure and quantify muscle and tendon function in real time. At NYDNRehab, we are dedicated to rehabilitating your injury, not just treating your symptoms. To accurately diagnose and treat your tendinopathy, we conduct a comprehensive evaluation consisting of:
  • Thorough health history
  • Review of physical activity at onset of pain
  • Manual physical exam
  • Artificial intelligence strength and range of motion assessment
  • High resolution ultrasonography and elastography
  • Surface electromyography
  • High-tech gait, running and motion analysis
For sport-specific injuries, we use the latest technologies to analyze movement mechanics and identify motor deficiencies. By eliminating movement and training errors, athletes and physically active patients are able to dramatically improve their performance while reducing their risk of injury.

Advantages of Diagnostic Ultrasonography over MRI

Patients with tendon injuries are often referred for MRI, but ultrasound imaging trumps MRI when it comes to tendon rehabilitation.

Advantages of ultrasound imaging over MRI:

  • Much higher resolution
  • On-site imaging and interpretation – no waiting for lab results
  • Capabilities for dynamic assessment in real time
  • Ability to visualize fascia adhesions related to tendon degeneration
  • Capabilities for superior microvascular imaging (SMI) to assess the inflammatory component of tendinopathies
  • Capabilities for sonoelastography to assess tendon stiffness
  • Ability to track patient progress via dynamic imaging during treatment
Click here to learn about regenerative technologies at NYDNRehab…

Running Diagnostics

Our state-of-the-art running analysis lab enables us to identify biomechanical and neuromuscular deficiencies that are invisible to the naked eye, and to distinguish between injuries and compensation strategies.

Gait analysis enables us to:
  • Measure and quantify functional limitations, impaired movement and disability
  • Identify movement deviations that are undetectable during the clinical examination
  • Distinguish compensation patterns from their root cause, so that treatment interventions target the injury and not just the symptoms
Data from gait analysis equips us to design effective treatment strategies that address the source of tendinopathy, retraining the athlete to run more efficiently, prolong their running career, and prevent future injuries.
COLLAPSE

We Guide Our Procedures with Ultrasound for Accurate and Effective Treatment

High-resolution ultrasonography not only gives us a cutting-edge diagnostic tool – it is a game-changer when it comes to tendon treatment. Most injuries involve multiple tissue types, and each demands its own therapeutic approach. Ultrasound imaging lets us differentiate between various tissues and structures to ensure that our needling and regenerative procedures hit their mark.

Ultrasound also provides a dynamic feedback tool for motor retraining. Injuries often disrupt optimal muscle coordination patterns when patients adopt compensation strategies to off-load injured tissues. Once the tissues have healed, it is necessary to restore neuromuscular pathways that govern motor unit firing patterns. Ultrasound gives the patient visual feedback, to restore optimal muscle activation patterns.

In addition, ultrasonography helps us track and confirm the effectiveness of our treatment protocols. Its capabilities for sonoelastography and superb microvascular imaging let us detect early signs of healing, and dynamic real-time imaging lets us measure progress as optimal mobility is restored.

Tensegrity is the Secret to Pain-Free Mobility

Most people take everyday mobility for granted until an injury occurs or pain sets in. Sometimes pain and reduced mobility seem to arise out of nowhere, with no apparent cause of onset. Regardless of whether your pain is caused by trauma or by something less obvious, tensegrity plays a key role.

Tensegrity refers to tensile integrity – a state where a system of individual components is held together under continuous elastic tension. In the human body, tensegrity is created by the myofascial system, the network of muscles and fascia that work together to produce, control, and guide forces, and to hold the body’s various organs and structures in place during movement.

Tensegrity can be disrupted when myofascial tissues are injured or damaged in some way. When that happens, nerves and blood vessels can become entrapped, preventing them from gliding among other structures and producing pain. At the same time, the elastic tension that governs joint alignment and controls movement becomes compromised, creating motor deficits that undermine mobility and stability.

Factors that disrupt myofascial tensegrity include:

  • Traumatic injury that affects multiple tissue types
  • Overuse injuries from sports, exercise or occupation
  • Old injuries that were never properly rehabilitated
  • Sedentary lifestyle with excessive sitting
  • Obesity that overloads the body’s structures
  • Inadequate hydration that deprives soft tissues of water needed to function
  • Diet high in sugar and carbs that causes myofascial tissue glycation, making it dense and sticky

Many doctors do not understand the crucial role of the myofascial system in preventing pain syndromes, movement disorders, and disease. In fact, most medical doctors have no idea how to correct myofascial dysfunction or even recognize it as a factor. They simply treat pain symptoms with medications and eventually recommend surgery.

At NYDNRehab, we understand that the body’s systems work together as an integrated whole, and that treating pain is not enough to eliminate its source. We use dynamic high-resolution ultrasound to explore the myofascial system in real time. Ultrasound imaging lets us visualize muscles, fascia, nerves and other structures in motion, to identify places where tensegrity has been disrupted.

Once we identify the problem, we use the most advanced therapeutic approaches to restore myofascial integrity and promote tissue healing.

Why Physical Therapy Alone is Not
Enough to Rehabilitate Tendinopathies

Physical therapy is an important component of tendon rehabilitation, but it does not provide a stand-alone solution. Prior to beginning physical therapy, we need to identify and treat complications that can undermine the effectiveness of physical therapy.

Issues that should be addressed prior to beginning physical therapy include:

  • Scar tissue and fascia adhesions
  • Neurogenic inflammation
  • Joint edema
  • Inflamed soft tissues
  • Myofascial trigger points
  • Compressed or entrapped nerves
  • Tendons that have degenerated and lost their elastic properties
  • Compensation patterns developed post-injury

Identifying and treating underlying issues prior to beginning physical therapy is key to getting fast and effective results. Failure to do so can completely undermine your treatment protocol, and in some cases your condition may even worsen.

icon

Our Regenerative Therapies
Accelerate Tendon Healing

The human body has its own innate healing mechanisms, but tendons sometimes need a nudge to accelerate the healing process. Regenerative technologies help to jump-start tendon healing by stimulating tissue repair at the cellular level. Our outpatient regenerative therapies expedite recovery with minimal discomfort for the patient.

SoftWave Electro-Hydraulic Shockwave Therapy

SoftWave Electro-Hydraulic Shockwave Therapy

SoftWave is a groundbreaking regenerative mechanotransduction technology that accelerates tissue healing. Its patented electro-hydraulic applicator delivers high-speed soundwaves that can penetrate up to six inches in depth. SoftWave’s defocused and linear focused shockwaves recruit maximum stem cells to the treatment site to promote healing. SoftWave’s wider and deeper penetration using defocused energy is a preferred treatment option for a broad spectrum of conditions, ranging from orthopedic injuries to pelvic health. SoftWave is the only unfocused shockwave technology currently available. According to recent research, SoftWave defocused waves combined with focused and radial shockwaves have maximum regenerative potential.


Myofascial Acoustic Compression Therapy (MyACT)

MyACT is a new type of focused shockwave technology that allows for deeper compression of the focused waves. Its higher frequency allows for precise neuro modulation under ultrasound guidance, with a special linear head for treating myofascial pain. MyACT transforms the mechanical energy of shockwaves into biochemical signals that precisely target damaged tissues. Most injuries involve more than one tissue type. When used together, our advanced shockwave technologies enable us to specifically target multiple tissue types with the most effective shockwave treatment.

Myofascial Acoustic Compression Therapy (MyACT)

Focused Extracorporeal Shock Wave Therapy (ESWT)

Focused ESWT is used as a regenerative treatment for damaged tendon, muscle and bone tissue. This technology produces high frequency sound waves to stimulate the body’s own reparative mechanisms. It is especially effective for chronic degenerative tendon disorders and myofascial pain syndrome.


Extracorporeal Magnetic Transduction Therapy (EMTT)

EMTT transmits high energy magnetic pulses to targeted tissues that synchronize with the body’s own magnetic fields, triggering a regenerative response. EMTT waves can penetrate deep tissues to target difficult-to-reach tendons, muscles, bones and nerves.

Extracorporeal Pulse Activation Technology (EPAT)

Extracorporeal Pulse Activation Technology (EPAT)

EPAT, sometimes called defocused shock wave therapy, is not a true shockwave. It uses mechanical pressure waves to enhance blood circulation, improving oxygen and nutrient delivery to muscle and fascia tissues, but has minimal regenerative properties.The mechanical properties of EPAT make it especially effective for fascial manipulation in combination with focused shockwaves. We combine EPAT with different types of shockwaves for holistic treatment, without additional cost to the patient.


High Energy Inductive Therapy (HEIT)

HEIT delivers high-intensity magnetic pulses to peripheral nerve tissues, to stimulate neuroplasticity. We leverage this FDA-approved methodology to treat pain and regenerate nerve fibers, for enhanced motor control.

INDIBA Radiofrequency Therapy

INDIBA Radiofrequency Therapy

INDIBA is a form of TECAR therapy that helps to restore the ionic charge of damaged cells, for faster injury healing and rehabilitation.


NESA Neuromodulation Therapy

NESA generates a low-frequency electrical current of intermittent and cyclical stimuli that soothes hypersensitized nerves and restores optimal signaling between the autonomic nervous system and the brain. We leverage this FDA-approved methodology to treat pain and regenerate nerve fibers, to enhance motor control.

NESA Neuromodulation Therapy

We Guide Our Needling and Orthobiologic Procedures with High-Resolution Ultrasound

Injection therapies use orthobiologic solutions that stimulate cellular repair by either nourishing or irritating the targeted cells. Guidance by ultrasound ensures that the injected substances hit their mark, for maximum effectiveness.

Platelet Rich Plasma (PRP)

PRP therapy uses a sample of the patient’s own whole blood, which is spun in a centrifuge to extract a high concentration of platelets. When injected into damaged tissues, PRP initiates tissue repair by releasing biologically active factors such as growth factors, cytokines, lysosomes and adhesion proteins. The injected solution stimulates the synthesis of new connective tissues and blood vessels. PRP can help to jump-start tendon healing in chronic injuries and accelerate repair in acute injuries.


Alpha-2-Macroglobulin (A2M)

Alpha 2 macroglobulin (A2M) is a naturally occurring blood plasma protein that acts as a carrier for numerous proteins and growth factors. As a protease inhibitor, A2M reduces inflammation in arthritic joints and helps to deactivate a variety of proteinases that typically degrade cartilage.


Prolotherapy

Prolotherapy uses a biologically neutral solution to irritate stubborn tissues, triggering the body’s innate healing mechanisms to grow new normal tendon, ligament and muscle fibers.


Interfascial Plane and Nerve Hydrodissection

Tendon injuries often involve fascial tissue that has become densified and/or formed adhesions, entrapping nerves and blood vessels, causing pain and restricting movement. Hydrodissection is a procedure where a saline solution is injected into densified fascia under ultrasound guidance. The solution works by separating fascial layers and freeing up entrapped nerves and blood vessels. We often use hydrodissection in conjunction with manual fascial manipulation.

Ultrasound Guided Dry Needling

Myofascial trigger points often contribute to knee pain. The dry needling procedure inserts non-medicated needles into trigger points to evoke a twitch response, releasing the trigger point and immediately relieving pain. Ultrasound guidance eliminates the need for multiple insertions, reducing pain and discomfort for the patient.

Our Therapies Icon

SM Neuromuscular Electrical Stimulation (SMNMES)

SM neuromuscular electrical stimulation (NMES) dynamically interacts with the patient during therapeutic exercises, providing real-time sensory, auditory and visual biofeedback to the patient. This breakthrough technology helps patients to recalibrate muscle actions, to optimize joint function. SMNMES has helped numerous patients to avoid unnecessary shoulder, knee and ankle surgeries, even in complex scenarios.

Our Therapies Icon

Ultrasound Guided Percutaneous Neuromodulation (PENS)

During PENS treatment, filament-thin needles are inserted through the skin into muscle tissue adjacent to the targeted nerve. A low frequency electrical current is then delivered via the inserted needles to stimulate the dysfunctional nerve. PENS normalizes nerve activity, improves brain plasticity and optimizes muscle recruitment patterns. This therapy is so effective that patients typically need only 4-6 treatment sessions.

Symptoms, Causes and Risk
Factors of Lateral Epicondylitis

Symptoms

  • Tenderness, burning and outer elbow pain
  • Pain that spreads to your forearm and wrist
  • Pain while gripping small objects
  • Pain while carrying loads with the elbow extended
  • Weakened grip

Causes

  • Improper grip during tennis or racquet sport
  • Poor trunk rotation when striking
  • Poor backhand form
  • Frequent use of tools like jackhammers or chainsaws
  • Occupational overuse among dentists, musicians, butchers and carpenters

Risk Factors

  • Being out of shape for your activity
  • Using improper technique during racquet sports
  • Not being properly fitted for a racquet
  • Engaging in an occupation that overloads the arm
  • Being middle aged

Get Personalized Physical Therapy Designed Just for You

At NYDNRehab, we treat the whole patient, not just their symptoms. We never use one-size-fits-all rehab protocols or antiquated recovery timelines. We believe that every injury is unique, and treatment should be based on a holistic approach that factors in the patient’s unique profile.

Once we have successfully pre-treated damaged tissues, we can begin one-on-one physical therapy to restore strength and stability, optimize mobility, and re-establish optimal neuromuscular pathways and muscle coordination patterns.

Your physical therapy protocol may include a combination of the following approaches:

  • Stecco fascial manipulation, to eliminate densifications and adhesions and restore fascia’s gliding properties
  • Postural restoration therapy to optimize total-body joint alignment
  • Dynamic neuromuscular stabilization (DNS) to restore developmental motor strategies
  • Integrated systems model (ISM) to optimize function and performance
  • Anatomy in motion (AIM) to enhance movement quality
  • Neurodynamics, to restore communication pathways between the brain and body
  • Conventional eccentric loading and strengthening exercises

Your back-to-sports physical therapy protocol may include sport-specific training to optimize motor skills and restore peak athletic performance. We carefully monitor patient progress with ultrasound imaging to confirm complete recovery.

Our High-Tech Equipment Produces Superior Results

Advancements in technology are changing the game in rehabilitative medicine, enabling us to accelerate healing and restore performance at an unprecedented pace. The clinic at NYDNRehab features some of the most advanced therapeutic equipment currently available, and rarely found in private clinics.

Your tendinopathy therapy may include the use of high-tech equipment:

C.A.R.E.N Computer Assisted Rehabilitation Environment

Originally developed to rehabilitate injured soldiers, this multifaceted system gives us a broad range of tools for assessment, feedback and performance enhancement. Dr. Kalka has integrated his own unique selection of technologies to optimize the ways in which C.A.R.E.N helps patients to achieve their goals.

Blood Flow Restriction Training (BFRT)

Rebuilding muscle strength while joints and connective tissues are still healing is a challenge for athletes who need to return to sport in the shortest time possible. BFRT enables you to increase muscle size and strength at much lower training volumes, to reduce stress on still-healing structures while rapidly restoring muscle performance.

Kineo Intelligent Load System

We use the Kineo intelligent loading system to create customized training and rehabilitation programs for our patients. With Kineo, we can customize variable load protocols for functional training, core training, agility drills and more. The Kineo variable resistance system lets us design a personalized variable load curve based on the needs of the individual patient.

Cryotherapy

Cold therapy has long been used for injury treatment and recovery from sports and exercise. Modern cryotherapy has replaced ice baths and ice packs with a dramatically faster and more convenient technology using nitrogen gas, directed via a specialized device to target injured tissues.

Factors that Increase Your Risk of Tendinopathy

Certain uncontrollable factors can potentially increase your risk of a tendon injury:

Female sex

Women have smaller tendons, with a lower capacity for hypertrophy due to lower protein turnover, lower levels of insulin-like growth factor (IGF-1), and less collagen synthesis in response to exercise. In addition, higher estrogen levels in females reduce tendon stiffness, potentially increasing injury risk.

Age

The ability of tendons to store and release energy diminishes with age. Physical activities that load tendons to the point of fatigue have been shown to cause greater damage to the tendon matrix in older adults.

Preventing Tendon Injuries

There are several things you can do to reduce your risk of tendon injuries:

  • Optimize your nutrition for protein and collagen synthesis. Bone broth and collagen supplements provide the fundamental building blocks for post-exercise tendon recovery. High-quality protein from grass-fed, pasture-raised and wild-caught beef, poultry and fish are the best sources of amino acids essential to muscle and tendon repair.
  • Drink plenty of water. Dry tendons are less elastic and more likely to rupture.
  • Choose supportive footwear that provides shock absorption, and frequently replace worn athletic shoes.
  • Get a biomechanical analysis to trouble-shoot and retrain faulty biomechanics.
  • Allow for ample recovery time after sports and exercise, especially if you have delayed-onset soreness. Most people need at least 48-72 hours to recover from intense physical activity.
icon

Leverage Our Innovative Approach to Tendon Rehabilitation

Recent evidence-based methodologies have dramatically changed the way tendinopathies are treated and rehabilitated. At NYDNRehab, we steer clear of invasive surgeries and pharmacological approaches. Our innovative and non-invasive therapies work with the body’s own self-healing mechanisms to optimize treatment outcomes and restore pain-free functional movement. The tendon clinic at NYDNRehab was created to successfully treat and prevent tendon injuries. Our personalized approach to patient care ensures you get the best one-on-one Physical Therapy, custom-designed for your unique profile. Our expertise in tendon rehab combined with our advanced technologies and methodologies make the tendon clinic at NYDNRehab your top choice for tendinitis treatment in NYC.

Our Awards

    Get pain-free treatment

    Provide your contact details and we will contact you during our operating hours




    Tendinopathy FAQs

    How can I tell if my tendon injury is serious enough to seek treatment?

    If you have chronic pain that never goes away or has gotten worse, it’s a good idea to see a tendon specialist. Failure to treat a ruptured tendon could result in degeneration of the tendon tissue that reduces performance and causes undesirable compensation patterns.

    Can an old tendon injury be rehabilitated?

    Tendon injuries that were never properly rehabilitated can cause additional problems anywhere along the kinetic chain. Regenerative therapies have the potential to stimulate tissue healing, even when the injury is several years old.

    Can I return to sports after a serious tendon rupture?

    Prior to getting back on the playing field, you should make sure your tendon is completely rehabilitated. Not only do you need to fully heal damaged tissues, but you should also restore neurodynamics that were disrupted by your injury, to reestablish coordinated muscle firing patterns and reduce your risk of re-injury.

    My tendon stops hurting once I warm up. Is it OK to work out?

    Absence of pain does not always indicate that the tendon is functioning properly. If the pain returns once you cool down, you may have serious tendon damage. Loading a ruptured tendon can make it worse. Best to see a specialist.

    What is the treatment for a detached tendon?

    When a tendon tears away from bone, it must be surgically re-attached, followed by intensive physical therapy to restore its mechanical properties and strength. The clinic at NYDNRehab features some of the most advanced technologies available for rehabilitating tendon injuries.

    bg

    In this instance, an athlete was originally diagnosed with minor quadriceps muscle strain and was treated for four weeks, with unsatisfactory results. When he came to our clinic, the muscle was not healing, and the patients’ muscle tissue had already begun to atrophy.

    Upon examination using MSUS, we discovered that he had a full muscle thickness tear that had been overlooked by his previous provider. To mitigate damage and promote healing, surgery should have been performed immediately after the injury occurred. Because of misdiagnosis and inappropriate treatment, the patient now has permanent damage that cannot be corrected.

    The most important advantage of Ultrasound over MRI imaging is its ability to zero in on the symptomatic region and obtain imaging, with active participation and feedback from the patient. Using dynamic MSUS, we can see what happens when patients contract their muscles, something that cannot be done with MRI. From a diagnostic perspective, this interaction is invaluable.

    Dynamic ultrasonography examination demonstrating
    the full thickness tear and already occurring muscle atrophy
    due to misdiagnosis and not referring the patient
    to proper diagnostic workup

    Demonstration of how very small muscle defect is made and revealed
    to be a complete tear with muscle contraction
    under diagnostic sonography (not possible with MRI)

    image

    Complete tear of rectus femoris
    with large hematoma (blood)

    image

    Separation of muscle ends due to tear elicited
    on dynamic sonography examination

    bg
    Buy now 3D Gait
    Payment Success
    Request Telehealth Request Telehealth Request in office visit Book now